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ABSTRACT 
Reliability at massive scale is one of the biggest challenges we 
face at Amazon.com, one of the largest e-commerce operations in 
the world; even the slightest outage has significant financial 
consequences and impacts customer trust. The Amazon.com 
platform, which provides services for many web sites worldwide, 
is implemented on top of an infrastructure of tens of thousands of 
servers and network components located in many datacenters 
around the world. At this scale, small and large components fail 
continuously and the way persistent state is managed in the face 
of these failures drives the reliability and scalability of the 
software systems.  

This paper presents the design and implementation of Dynamo, a 
highly available key-value storage system that some of Amazon’s 
core services use to provide an “always-on” experience.  To 
achieve this level of availability, Dynamo sacrifices consistency 
under certain failure scenarios. It makes extensive use of object 
versioning and application-assisted conflict resolution in a manner 
that provides a novel interface for developers to use. 

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Storage Management; D.4.5 
[Operating Systems]: Reliability; D.4.2 [Operating Systems]: 
Performance; 

General Terms 
Algorithms, Management, Measurement, Performance, Design, 
Reliability. 

1. INTRODUCTION  
Amazon runs a world-wide e-commerce platform that serves tens 
of millions customers at peak times using tens of thousands of 
servers located in many data centers around the world. There are 
strict operational requirements on Amazon’s platform in terms of 
performance, reliability and efficiency, and to support continuous 
growth the platform needs to be highly scalable. Reliability is one 
of the most important requirements because even the slightest 
outage has significant financial consequences and impacts 
customer trust. In addition, to support continuous growth, the 
platform needs to be highly scalable. 

One of the lessons our organization has learned from operating 
Amazon’s platform is that the reliability and scalability of a 
system is dependent on how its application state is managed. 
Amazon uses a highly decentralized, loosely coupled, service 
oriented architecture consisting of hundreds of services. In this 
environment there is a particular need for storage technologies 
that are always available. For example, customers should be able 
to view and add items to their shopping cart even if disks are 
failing, network routes are flapping, or data centers are being 
destroyed by tornados. Therefore, the service responsible for 
managing shopping carts requires that it can always write to and 
read from its data store, and that its data needs to be available 
across multiple data centers.  

Dealing with failures in an infrastructure comprised of millions of 
components is our standard mode of operation; there are always a 
small but significant number of server and network components 
that are failing at any given time. As such Amazon’s software 
systems need to be constructed in a manner that treats failure 
handling as the normal case without impacting availability or 
performance. 

To meet the reliability and scaling needs, Amazon has developed 
a number of storage technologies, of which the Amazon Simple 
Storage Service (also available outside of Amazon and known as 
Amazon S3), is probably the best known. This paper presents the 
design and implementation of Dynamo, another highly available 
and scalable distributed data store built for Amazon’s platform. 
Dynamo is used to manage the state of services that have very 
high reliability requirements and need tight control over the 
tradeoffs between availability, consistency, cost-effectiveness and 
performance. Amazon’s platform has a very diverse set of 
applications with different storage requirements. A select set of 
applications requires a storage technology that is flexible enough 
to let application designers configure their data store appropriately 
based on these tradeoffs to achieve high availability and 
guaranteed performance in the most cost effective manner. 

There are many services on Amazon’s platform that only need 
primary-key access to a data store. For many services, such as 
those that provide best seller lists, shopping carts, customer 
preferences, session management, sales rank, and product catalog, 
the common pattern of using a relational database would lead to 
inefficiencies and limit scale and availability. Dynamo provides a 
simple primary-key only interface to meet the requirements of 
these applications.  
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Dynamo uses a synthesis of well known techniques to achieve 
scalability and availability: Data is partitioned and replicated 
using consistent hashing [10], and consistency is facilitated by 
object versioning [12]. The consistency among replicas during 
updates is maintained by a quorum-like technique and a 
decentralized replica synchronization protocol. Dynamo employs 
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a gossip based distributed failure detection and membership 
protocol. Dynamo is a completely decentralized system with 
minimal need for manual administration. Storage nodes can be 
added and removed from Dynamo without requiring any manual 
partitioning or redistribution. 

In the past year, Dynamo has been the underlying storage 
technology for a number of the core services in Amazon’s e-
commerce platform. It was able to scale to extreme peak loads 
efficiently without any downtime during the busy holiday 
shopping season. For example, the service that maintains 
shopping cart (Shopping Cart Service) served tens of millions 
requests that resulted in well over 3 million checkouts in a single 
day and the service that manages session state handled hundreds 
of thousands of concurrently active sessions. 

The main contribution of this work for the research community is 
the evaluation of how different techniques can be combined to 
provide a single highly-available system. It demonstrates that an 
eventually-consistent storage system can be used in production 
with demanding applications. It also provides insight into the 
tuning of these techniques to meet the requirements of production 
systems with very strict performance demands. 

The paper is structured as follows. Section 2 presents the 
background and Section 3 presents the related work. Section 4 
presents the system design and Section 5 describes the 
implementation. Section 6 details the experiences and insights 
gained by running Dynamo in production and Section 7 concludes 
the paper. There are a number of places in this paper where 
additional information may have been appropriate but where 
protecting Amazon’s business interests require us to reduce some 
level of detail. For this reason, the intra- and inter-datacenter 
latencies in section 6, the absolute request rates in section 6.2 and 
outage lengths and workloads in section 6.3 are provided through 
aggregate measures instead of absolute details. 

2. BACKGROUND  
Amazon’s e-commerce platform is composed of hundreds of 
services that work in concert to deliver functionality ranging from 
recommendations to order fulfillment to fraud detection. Each 
service is exposed through a well defined interface and is 
accessible over the network. These services are hosted in an 
infrastructure that consists of tens of thousands of servers located 
across many data centers world-wide. Some of these services are 
stateless (i.e., services which aggregate responses from other 
services) and some are stateful (i.e., a service that generates its 
response by executing business logic on its state stored in 
persistent store). 

Traditionally production systems store their state in relational 
databases. For many of the more common usage patterns of state 
persistence, however, a relational database is a solution that is far 
from ideal. Most of these services only store and retrieve data by 
primary key and do not require the complex querying and 
management functionality offered by an RDBMS. This excess 
functionality requires expensive hardware and highly skilled 
personnel for its operation, making it a very inefficient solution. 
In addition, the available replication technologies are limited and 
typically choose consistency over availability. Although many 
advances have been made in the recent years, it is still not easy to 
scale-out databases or use smart partitioning schemes for load 
balancing. 

This paper describes Dynamo, a highly available data storage 
technology that addresses the needs of these important classes of 
services. Dynamo has a simple key/value interface, is highly 
available with a clearly defined consistency window, is efficient 
in its resource usage, and has a simple scale out scheme to address 
growth in data set size or request rates. Each service that uses 
Dynamo runs its own Dynamo instances.  

2.1 System Assumptions and Requirements 
The storage system for this class of services has the following 
requirements: 

Query Model: simple read and write operations to a data item that 
is uniquely identified by a key. State is stored as binary objects 
(i.e., blobs) identified by unique keys. No operations span 
multiple data items and there is no need for relational schema. 
This requirement is based on the observation that a significant 
portion of Amazon’s services can work with this simple query 
model and do not need any relational schema. Dynamo targets 
applications that need to store objects that are relatively small 
(usually less than 1 MB).  

ACID Properties: ACID (Atomicity, Consistency, Isolation, 
Durability) is a set of properties that guarantee that database 
transactions are processed reliably. In the context of databases, a 
single logical operation on the data is called a transaction. 
Experience at Amazon has shown that data stores that provide 
ACID guarantees tend to have poor availability. This has been 
widely acknowledged by both the industry and academia [5]. 
Dynamo targets applications that operate with weaker consistency 
(the “C” in ACID) if this results in high availability. Dynamo 
does not provide any isolation guarantees and permits only single 
key updates.   

Efficiency: The system needs to function on a commodity 
hardware infrastructure. In Amazon’s platform, services have 
stringent latency requirements which are in general measured at 
the 99.9th percentile of the distribution. Given that state access 
plays a crucial role in service operation the storage system must 
be capable of meeting such stringent SLAs (see Section 2.2 
below). Services must be able to configure Dynamo such that they 
consistently achieve their latency and throughput requirements. 
The tradeoffs are in performance, cost efficiency, availability, and 
durability guarantees.  

Other Assumptions: Dynamo is used only by Amazon’s internal 
services. Its operation environment is assumed to be non-hostile 
and there are no security related requirements such as 
authentication and authorization. Moreover, since each service 
uses its distinct instance of Dynamo, its initial design targets a 
scale of up to hundreds of storage hosts. We will discuss the 
scalability limitations of Dynamo and possible scalability related 
extensions in later sections. 

2.2 Service Level Agreements (SLA) 
To guarantee that the application can deliver its functionality in a 
bounded time, each and every dependency in the platform needs 
to deliver its functionality with even tighter bounds. Clients and 
services engage in a Service Level Agreement (SLA), a formally 
negotiated contract where a client and a service agree on several 
system-related characteristics, which most prominently include 
the client’s expected request rate distribution for a particular API 
and the expected service latency under those conditions. An 
example of a simple SLA is a service guaranteeing that it will 
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provide a response within 300ms for 99.9% of its requests for a 
peak client load of 500 requests per second. 

In Amazon’s decentralized service oriented infrastructure, SLAs 
play an important role. For example a page request to one of the 
e-commerce sites typically requires the rendering engine to 
construct its response by sending requests to over 150 services. 
These services often have multiple dependencies, which 
frequently are other services, and as such it is not uncommon for 
the call graph of an application to have more than one level. To 
ensure that the page rendering engine can maintain a clear bound 
on page delivery each service within the call chain must obey its 
performance contract.  

Figure 1 shows an abstract view of the architecture of Amazon’s 
platform, where dynamic web content is generated by page 
rendering components which in turn query many other services. A 
service can use different data stores to manage its state and these 
data stores are only accessible within its service boundaries. Some 
services act as aggregators by using several other services to 
produce a composite response. Typically, the aggregator services 
are stateless, although they use extensive caching. 

A common approach in the industry for forming a performance 
oriented SLA is to describe it using average, median and expected 
variance. At Amazon we have found that these metrics are not 
good enough if the goal is to build a system where all customers 
have a good experience, rather than just the majority.  For 
example if extensive personalization techniques are used then 
customers with longer histories require more processing which 
impacts performance at the high-end of the distribution. An SLA 
stated in terms of mean or median response times will not address 
the performance of this important customer segment. To address 
this issue, at Amazon, SLAs are expressed and measured at the 
99.9th percentile of the distribution. The choice for 99.9% over an 
even higher percentile has been made based on a cost-benefit 
analysis which demonstrated a significant increase in cost to 
improve performance that much. Experiences with Amazon’s 

production systems have shown that this approach provides a 
better overall experience compared to those systems that meet 
SLAs defined based on the mean or median. 

In this paper there are many references to this 99.9th percentile of 
distributions, which reflects Amazon engineers’ relentless focus 
on performance from the perspective of the customers’ 
experience. Many papers report on averages, so these are included 
where it makes sense for comparison purposes. Nevertheless, 
Amazon’s engineering and optimization efforts are not focused on 
averages. Several techniques, such as the load balanced selection 
of write coordinators, are purely targeted at controlling 
performance at the 99.9th percentile.   

Storage systems often play an important role in establishing a 
service’s SLA, especially if the business logic is relatively 
lightweight, as is the case for many Amazon services. State 
management then becomes the main component of a service’s 
SLA. One of the main design considerations for Dynamo is to 
give services control over their system properties, such as 
durability and consistency, and to let services make their own 
tradeoffs between functionality, performance and cost-
effectiveness.  

Figure 1: Service-oriented architecture of Amazon’s 
platform 

2.3 Design Considerations 
Data replication algorithms used in commercial systems 
traditionally perform synchronous replica coordination in order to 
provide a strongly consistent data access interface. To achieve this 
level of consistency, these algorithms are forced to tradeoff the 
availability of the data under certain failure scenarios. For 
instance, rather than dealing with the uncertainty of the 
correctness of an answer, the data is made unavailable until it is 
absolutely certain that it is correct. From the very early replicated 
database works, it is well known that when dealing with the 
possibility of network failures, strong consistency and high data 
availability cannot be achieved simultaneously [2, 11]. As such 
systems and applications need to be aware which properties can 
be achieved under which conditions. 

For systems prone to server and network failures, availability can 
be increased by using optimistic replication techniques, where 
changes are allowed to propagate to replicas in the background, 
and concurrent, disconnected work is tolerated. The challenge 
with this approach is that it can lead to conflicting changes which 
must be detected and resolved.  This process of conflict resolution 
introduces two problems: when to resolve them and who resolves 
them. Dynamo is designed to be an eventually consistent data 
store; that is all updates reach all replicas eventually. 

An important design consideration is to decide when to perform 
the process of resolving update conflicts, i.e., whether conflicts 
should be resolved during reads or writes. Many traditional data 
stores execute conflict resolution during writes and keep the read 
complexity simple [7]. In such systems, writes may be rejected if 
the data store cannot reach all (or a majority of) the replicas at a 
given time. On the other hand, Dynamo targets the design space 
of an “always writeable” data store (i.e., a data store that is highly 
available for writes). For a number of Amazon services, rejecting 
customer updates could result in a poor customer experience. For 
instance, the shopping cart service must allow customers to add 
and remove items from their shopping cart even amidst network 
and server failures. This requirement forces us to push the 
complexity of conflict resolution to the reads in order to ensure 
that writes are never rejected.  
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The next design choice is who performs the process of conflict 
resolution. This can be done by the data store or the application. If 
conflict resolution is done by the data store, its choices are rather 
limited. In such cases, the data store can only use simple policies, 
such as “last write wins” [22], to resolve conflicting updates. On 
the other hand, since the application is aware of the data schema it 
can decide on the conflict resolution method that is best suited for 
its client’s experience. For instance, the application that maintains 
customer shopping carts can choose to “merge” the conflicting 
versions and return a single unified shopping cart. Despite this 
flexibility, some application developers may not want to write 
their own conflict resolution mechanisms and choose to push it 
down to the data store, which in turn chooses a simple policy such 
as “last write wins”.  

Other key principles embraced in the design are: 

Incremental scalability: Dynamo should be able to scale out one 
storage host (henceforth, referred to as “node”) at a time, with 
minimal impact on both operators of the system and the system 
itself. 

Symmetry: Every node in Dynamo should have the same set of 
responsibilities as its peers; there should be no distinguished node 
or nodes that take special roles or extra set of responsibilities. In 
our experience, symmetry simplifies the process of system 
provisioning and maintenance.  

Decentralization: An extension of symmetry, the design should 
favor decentralized peer-to-peer techniques over centralized 
control. In the past, centralized control has resulted in outages and 
the goal is to avoid it as much as possible. This leads to a simpler, 
more scalable, and more available system. 

Heterogeneity: The system needs to be able to exploit 
heterogeneity in the infrastructure it runs on. e.g. the work 
distribution must be proportional to the capabilities of the 
individual servers. This is essential in adding new nodes with 
higher capacity without having to upgrade all hosts at once. 

3. RELATED WORK 
3.1 Peer to Peer Systems 
There are several peer-to-peer (P2P) systems that have looked at 
the problem of data storage and distribution. The first generation 
of P2P systems, such as Freenet and Gnutella1, were 
predominantly used as file sharing systems. These were examples 
of unstructured P2P networks where the overlay links between 
peers were established arbitrarily. In these networks, a search 
query is usually flooded through the network to find as many 
peers as possible that share the data. P2P systems evolved to the 
next generation into what is widely known as structured P2P 
networks. These networks employ a globally consistent protocol 
to ensure that any node can efficiently route a search query to 
some peer that has the desired data. Systems like Pastry [16] and 
Chord [20] use routing mechanisms to ensure that queries can be 
answered within a bounded number of hops. To reduce the 
additional latency introduced by multi-hop routing, some P2P 
systems (e.g., [14]) employ O(1) routing where each peer 
maintains enough routing information locally so that it can route 
requests (to access a data item) to the appropriate peer within a 
constant number of hops.   

Various storage systems, such as Oceanstore [9] and PAST [17] 
were built on top of these routing overlays. Oceanstore provides a 
global, transactional, persistent storage service that supports 
serialized updates on widely replicated data. To allow for 
concurrent updates while avoiding many of the problems inherent 
with wide-area locking, it uses an update model based on conflict 
resolution. Conflict resolution was introduced in [21] to reduce 
the number of transaction aborts. Oceanstore resolves conflicts by 
processing a series of updates, choosing a total order among them, 
and then applying them atomically in that order. It is built for an 
environment where the data is replicated on an untrusted 
infrastructure. By comparison, PAST provides a simple 
abstraction layer on top of Pastry for persistent and immutable 
objects. It assumes that the application can build the necessary 
storage semantics (such as mutable files) on top of it.  

3.2 Distributed File Systems and Databases 
Distributing data for performance, availability and durability has 
been widely studied in the file system and database systems 
community. Compared to P2P storage systems that only support 
flat namespaces, distributed file systems typically support 
hierarchical namespaces. Systems like Ficus [15] and Coda [19] 
replicate files for high availability at the expense of consistency. 
Update conflicts are typically managed using specialized conflict 
resolution procedures. The Farsite system [1] is a distributed file 
system that does not use any centralized server like NFS. Farsite 
achieves high availability and scalability using replication. The 
Google File System [6] is another distributed file system built for 
hosting the state of Google’s internal applications. GFS uses a 
simple design with a single master server for hosting the entire 
metadata and where the data is split into chunks and stored in 
chunkservers. Bayou is a distributed relational database system 
that allows disconnected operations and provides eventual data 
consistency [21].  

Among these systems, Bayou, Coda and Ficus allow disconnected 
operations and are resilient to issues such as network partitions 
and outages. These systems differ on their conflict resolution 
procedures. For instance, Coda and Ficus perform system level 
conflict resolution and Bayou allows application level resolution. 
All of them, however, guarantee eventual consistency. Similar to 
these systems, Dynamo allows read and write operations to 
continue even during network partitions and resolves updated 
conflicts using different conflict resolution mechanisms. 
Distributed block storage systems like FAB [18] split large size 
objects into smaller blocks and stores each block in a highly 
available manner. In comparison to these systems, a key-value 
store is more suitable in this case because: (a) it is intended to 
store relatively small objects (size < 1M) and (b) key-value stores 
are easier to configure on a per-application basis. Antiquity is a 
wide-area distributed storage system designed to handle multiple 
server failures [23]. It uses a secure log to preserve data integrity, 
replicates each log on multiple servers for durability, and uses 
Byzantine fault tolerance protocols to ensure data consistency. In 
contrast to Antiquity, Dynamo does not focus on the problem of 
data integrity and security and is built for a trusted environment. 
Bigtable is a distributed storage system for managing structured 
data. It maintains a sparse, multi-dimensional sorted map and 
allows applications to access their data using multiple attributes 
[2]. Compared to Bigtable, Dynamo targets applications that 
require only key/value access with primary focus on high 
availability where updates are not rejected even in the wake of 
network partitions or server failures. 

1 http://freenetproject.org/, http://www.gnutella.org 
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Traditional replicated relational database systems focus on the 
problem of guaranteeing strong consistency to replicated data. 
Although strong consistency provides the application writer a 
convenient programming model, these systems are limited in 
scalability and availability [7]. These systems are not capable of 
handling network partitions because they typically provide strong 
consistency guarantees.  

3.3 Discussion 
Dynamo differs from the aforementioned decentralized storage 
systems in terms of its target requirements. First, Dynamo is 
targeted mainly at applications that need an “always writeable” 
data store where no updates are rejected due to failures or 
concurrent writes. This is a crucial requirement for many Amazon 
applications. Second, as noted earlier, Dynamo is built for an 
infrastructure within a single administrative domain where all 
nodes are assumed to be trusted. Third, applications that use 
Dynamo do not require support for hierarchical namespaces (a 
norm in many file systems) or complex relational schema 
(supported by traditional databases). Fourth, Dynamo is built for 
latency sensitive applications that require at least 99.9% of read 
and write operations to be performed within a few hundred 
milliseconds. To meet these stringent latency requirements, it was 
imperative for us to avoid routing requests through multiple nodes 
(which is the typical design adopted by several distributed hash 
table systems such as Chord and Pastry). This is because multi-
hop routing increases variability in response times, thereby 
increasing the latency at higher percentiles. Dynamo can be 
characterized as a zero-hop DHT, where each node maintains 
enough routing information locally to route a request to the 
appropriate node directly. 

4. SYSTEM ARCHITECTURE 
The architecture of a storage system that needs to operate in a 
production setting is complex. In addition to the actual data 
persistence component, the system needs to have scalable and 
robust solutions for load balancing, membership and failure 
detection, failure recovery, replica synchronization, overload 
handling, state transfer, concurrency and job scheduling, request 
marshalling, request routing, system monitoring and alarming, 
and configuration management. Describing the details of each of 
the solutions is not possible, so this paper focuses on the core 
distributed systems techniques used in Dynamo: partitioning, 
replication, versioning, membership, failure handling and scaling. 

Table 1 presents a summary of the list of techniques Dynamo uses 
and their respective advantages. 

4.1 System Interface  
Dynamo stores objects associated with a key through a simple 
interface; it exposes two operations: get() and put(). The get(key) 
operation locates the object replicas associated with the key in the 
storage system and returns a single object or a list of objects with 
conflicting versions along with a context. The put(key, context, 
object) operation determines where the replicas of the object 
should be placed based on the associated key, and writes the 
replicas to disk. The context encodes system metadata about the 
object that is opaque to the caller and includes information such as 
the version of the object. The context information is stored along 
with the object so that the system can verify the validity of the 
context object supplied in the put request. 

Dynamo treats both the key and the object supplied by the caller 
as an opaque array of bytes. It applies a MD5 hash on the key to 
generate a 128-bit identifier, which is used to determine the 
storage nodes that are responsible for serving the key.  

4.2 Partitioning Algorithm 
One of the key design requirements for Dynamo is that it must 
scale incrementally. This requires a mechanism to dynamically 
partition the data over the set of nodes (i.e., storage hosts) in the 
system. Dynamo’s partitioning scheme relies on consistent 
hashing to distribute the load across multiple storage hosts. In 
consistent hashing [10], the output range of a hash function is 
treated as a fixed circular space or “ring” (i.e. the largest hash 
value wraps around to the smallest hash value). Each node in the 
system is assigned a random value within this space which 
represents its “position” on the ring. Each data item identified by 
a key is  assigned to a node by hashing the data item’s key to yield 
its position on the ring, and then walking the ring clockwise to 
find the first node with a position larger than the item’s position. 

Table 1: Summary of techniques used in Dynamo and 
their advantages. 

A 

B 

C 

D E 

F 

G 

Key K 

Nodes B, C 
and D store 

keys in 
range (A,B) 

including 
K. 

 

Problem Technique Advantage 

Partitioning Consistent Hashing Incremental 
Scalability 

High Availability 
for writes 

Vector clocks with 
reconciliation during 

reads 

Version size is 
decoupled from 

update rates. 

Handling temporary 
failures 

Sloppy Quorum and 
hinted handoff 

Provides high 
availability and 

durability guarantee 
when some of the 
replicas are not 

available.  
Figure 2: Partitioning and replication of keys in Dynamo 
ring.  

Recovering from 
permanent failures 

Anti-entropy using 
Merkle trees 

Synchronizes 
divergent replicas in 

the background. 

Membership and 
failure detection 

Gossip-based 
membership protocol 
and failure detection. 

Preserves symmetry 
and avoids having a 
centralized registry 

for storing 
membership and 

node liveness 
information. 
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Thus, each node becomes responsible for the region in the ring 
between it and its predecessor node on the ring. The principle 
advantage of consistent hashing is that departure or arrival of a 
node only affects its immediate neighbors and other nodes remain 
unaffected.  

The basic consistent hashing algorithm presents some challenges. 
First, the random position assignment of each node on the ring 
leads to non-uniform data and load distribution. Second, the basic 
algorithm is oblivious to the heterogeneity in the performance of 
nodes. To address these issues, Dynamo uses a variant of 
consistent hashing (similar to the one used in [10, 20]): instead of 
mapping a node to a single point in the circle, each node gets 
assigned to multiple points in the ring. To this end, Dynamo uses 
the concept of “virtual nodes”. A virtual node looks like a single 
node in the system, but each node can be responsible for more 
than one virtual node. Effectively, when a new node is added to 
the system, it is assigned multiple positions (henceforth, “tokens”) 
in the ring. The process of fine-tuning Dynamo’s partitioning 
scheme is discussed in Section 6. 

Using virtual nodes has the following advantages: 

• If a node becomes unavailable (due to failures or routine 
maintenance), the load handled by this node is evenly 
dispersed across the remaining available nodes. 

• When a node becomes available again, or a new node is 
added to the system, the newly available node accepts a 
roughly equivalent amount of load from each of the other 
available nodes.  

• The number of virtual nodes that a node is responsible can 
decided based on its capacity, accounting for heterogeneity 
in the physical infrastructure.  

4.3 Replication 
To achieve high availability and durability, Dynamo replicates its 
data on multiple hosts. Each data item is replicated at N hosts, 
where N is a parameter configured “per-instance”. Each key, k, is 
assigned to a coordinator node (described in the previous section). 
The coordinator is in charge of the replication of the data items 
that fall within its range. In addition to locally storing each key 
within its range, the coordinator replicates these keys at the N-1 
clockwise successor nodes in the ring. This results in a system 
where each node is responsible for the region of the ring between 
it and its Nth predecessor. In Figure 2, node B replicates the key k 
at nodes C and D in addition to storing it locally. Node D will 
store the keys that fall in the ranges (A, B], (B, C], and (C, D]. 

The list of nodes that is responsible for storing a particular key is 
called the preference list. The system is designed, as will be 
explained in Section 4.8, so that every node in the system can 
determine which nodes should be in this list for any particular 
key.  To account for node failures, preference list contains more 
than N nodes. Note that with the use of virtual nodes, it is possible 
that the first N successor positions for a particular key may be 
owned by less than N distinct physical nodes (i.e. a node may 
hold more than one of the first N positions). To address this, the 
preference list for a key is constructed by skipping positions in the 
ring to ensure that the list contains only distinct physical nodes.  

4.4 Data Versioning  
Dynamo provides eventual consistency, which allows for updates 
to be propagated to all replicas asynchronously. A put() call may 

return to its caller before the update has been applied at all the 
replicas, which can result in scenarios where a subsequent get() 
operation may return an object that does not have the latest 
updates.. If there are no failures then there is a bound on the 
update propagation times. However, under certain failure 
scenarios (e.g., server outages or network partitions), updates may 
not arrive at all replicas for an extended period of time. 

There is a category of applications in Amazon’s platform that can 
tolerate such inconsistencies and can be constructed to operate 
under these conditions. For example, the shopping cart application 
requires that an “Add to Cart” operation can never be forgotten or 
rejected. If the most recent state of the cart is unavailable, and a 
user makes changes to an older version of the cart, that change is 
still meaningful and should be preserved. But at the same time it 
shouldn’t supersede the currently unavailable state of the cart, 
which itself may contain changes that should be preserved. Note 
that both “add to cart” and “delete item from cart” operations are 
translated into put requests to Dynamo. When a customer wants to 
add an item to (or remove from) a shopping cart and the latest 
version is not available, the item is added to (or removed from) 
the older version and the divergent versions are reconciled later.  

In order to provide this kind of guarantee, Dynamo treats the 
result of each modification as a new and immutable version of the 
data. It allows for multiple versions of an object to be present in 
the system at the same time. Most of the time, new versions 
subsume the previous version(s), and the system itself can 
determine the authoritative version (syntactic reconciliation).  
However, version branching may happen, in the presence of 
failures combined with concurrent updates, resulting in 
conflicting versions of an object. In these cases, the system cannot 
reconcile the multiple versions of the same object and the client 
must perform the reconciliation in order to collapse multiple 
branches of data evolution back into one (semantic 
reconciliation). A typical example of a collapse operation is 
“merging” different versions of a customer’s shopping cart. Using 
this reconciliation mechanism, an “add to cart” operation is never 
lost. However, deleted items can resurface. 

It is important to understand that certain failure modes can 
potentially result in the system having not just two but several 
versions of the same data. Updates in the presence of network 
partitions and node failures can potentially result in an object 
having distinct version sub-histories, which the system will need 
to reconcile in the future. This requires us to design applications 
that explicitly acknowledge the possibility of multiple versions of 
the same data (in order to never lose any updates).  

Dynamo uses vector clocks [12] in order to capture causality 
between different versions of the same object. A vector clock is 
effectively a list of (node, counter) pairs. One vector clock is 
associated with every version of every object. One can determine 
whether two versions of an object are on parallel branches or have 
a causal ordering, by examine their vector clocks. If the counters 
on the first object’s clock are less-than-or-equal to all of the nodes 
in the second clock, then the first is an ancestor of the second and 
can be forgotten. Otherwise, the two changes are considered to be 
in conflict and require reconciliation. 

In Dynamo, when a client wishes to update an object, it must 
specify which version it is updating. This is done by passing the 
context it obtained from an earlier read operation, which contains 
the vector clock information. Upon processing a read request, if 
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Dynamo has access to multiple branches that cannot be 
syntactically reconciled, it will return all the objects at the leaves, 
with the corresponding version information in the context. An 
update using this context is considered to have reconciled the 
divergent versions and the branches are collapsed into a single 
new version. 

To illustrate the use of vector clocks, let us consider the example 
shown in Figure 3.  A client writes a new object. The node (say 
Sx) that handles the write for this key increases its sequence 
number and uses it to create the data's vector clock. The system 
now has the object D1 and its associated clock [(Sx, 1)]. The 
client updates the object. Assume the same node handles this 
request as well. The system now also has object D2 and its 
associated clock [(Sx, 2)]. D2 descends from D1 and therefore 
over-writes D1, however there may be replicas of D1 lingering at 
nodes that have not yet seen D2. Let us assume that the same 
client updates the object again and a different server (say Sy) 
handles the request. The system now has data D3 and its 
associated clock [(Sx, 2), (Sy, 1)].  

Next assume a different client reads D2 and then tries to update it, 
and another node (say Sz) does the write. The system now has D4 
(descendant of D2) whose version clock is [(Sx, 2), (Sz, 1)]. A 
node that is aware of D1 or D2 could determine, upon receiving 
D4 and its clock, that D1 and D2 are overwritten by the new data 
and can be garbage collected. A node that is aware of D3 and 
receives D4 will find that there is no causal relation between 
them. In other words, there are changes in D3 and D4 that are not 
reflected in each other. Both versions of the data must be kept and 
presented to a client (upon a read) for semantic reconciliation.  

 Now assume some client reads both D3 and D4 (the context will 
reflect that both values were found by the read). The read's 
context is a summary of the clocks of D3 and D4, namely [(Sx, 2), 
(Sy, 1), (Sz, 1)]. If the client performs the reconciliation and node 
Sx coordinates the write, Sx will update its sequence number in 
the clock. The new data D5 will have the following clock: [(Sx, 
3), (Sy, 1), (Sz, 1)].  

A possible issue with vector clocks is that the size of vector 
clocks may grow if many servers coordinate the writes to an 

object. In practice, this is not likely because the writes are usually 
handled by one of the top N nodes in the preference list. In case of 
network partitions or multiple server failures, write requests may 
be handled by nodes that are not in the top N nodes in the 
preference list causing the size of vector clock to grow. In these 
scenarios, it is desirable to limit the size of vector clock. To this 
end, Dynamo employs the following clock truncation scheme: 
Along with each (node, counter) pair, Dynamo stores a timestamp 
that indicates the last time the node updated the data item. When 
the number of (node, counter) pairs in the vector clock reaches a 
threshold (say 10), the oldest pair is removed from the clock. 
Clearly, this truncation scheme can lead to inefficiencies in 
reconciliation as the descendant relationships cannot be derived 
accurately. However, this problem has not surfaced in production 
and therefore this issue has not been thoroughly investigated.  

 
Figure 3: Version evolution of an object over time. 

4.5 Execution of get () and put () operations 
Any storage node in Dynamo is eligible to receive client get and 
put operations for any key. In this section, for sake of simplicity, 
we describe how these operations are performed in a failure-free 
environment and in the subsequent section we describe how read 
and write operations are executed during failures.  

Both get and put operations are invoked using Amazon’s 
infrastructure-specific request processing framework over HTTP. 
There are two strategies that a client can use to select a node: (1) 
route its request through a generic load balancer that will select a 
node based on load information, or (2) use a partition-aware client 
library that routes requests directly to the appropriate coordinator 
nodes. The advantage of the first approach is that the client does 
not have to link any code specific to Dynamo in its application, 
whereas the second strategy can achieve lower latency because it 
skips a potential forwarding step. 

A node handling a read or write operation is known as the 
coordinator. Typically, this is the first among the top N nodes in 
the preference list. If the requests are received through a load 
balancer, requests to access a key may be routed to any random 
node in the ring. In this scenario, the node that receives the 
request will not coordinate it if the node is not in the top N of the 
requested key’s preference list. Instead, that node will forward the 
request to the first among the top N nodes in the preference list. 

 Read and write operations involve the first N healthy nodes in the 
preference list, skipping over those that are down or inaccessible. 
When all nodes are healthy, the top N nodes in a key’s preference 
list are accessed. When there are node failures or network 
partitions, nodes that are lower ranked in the preference list are 
accessed.  

To maintain consistency among its replicas, Dynamo uses a 
consistency protocol similar to those used in quorum systems. 
This protocol has two key configurable values: R and W. R is the 
minimum number of nodes that must participate in a successful 
read operation. W is the minimum number of nodes that must 
participate in a successful write operation.  Setting R and W such 
that R + W > N yields a quorum-like system. In this model, the 
latency of a get (or put) operation is dictated by the slowest of the 
R (or W) replicas. For this reason, R and W are usually 
configured to be less than N, to provide better latency.  

Upon receiving a put() request for a key, the coordinator generates 
the vector clock for the new version and writes the new version 
locally. The coordinator then sends the new version (along with 
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the new vector clock) to the N highest-ranked reachable nodes. If 
at least W-1 nodes respond then the write is considered 
successful.  

Similarly, for a get() request, the coordinator requests all existing 
versions of data for that key from the N highest-ranked reachable 
nodes in the preference list for that key, and then waits for R 
responses before returning the result to the client. If the 
coordinator ends up gathering multiple versions of the data, it 
returns all the versions it deems to be causally unrelated. The 
divergent versions are then reconciled and the reconciled version 
superseding the current versions is written back.  

4.6 Handling Failures: Hinted Handoff 
If Dynamo used a traditional quorum approach it would be 
unavailable during server failures and network partitions, and 
would have reduced durability even under the simplest of failure 
conditions. To remedy this it does not enforce strict quorum 
membership and instead it uses a “sloppy quorum”; all read and 
write operations are performed on the first N healthy nodes from 
the preference list, which may not always be the first N nodes 
encountered while walking the consistent hashing ring.  

Consider the example of Dynamo configuration given in Figure 2 
with N=3. In this example, if node A is temporarily down or 
unreachable during a write operation then a replica that would 
normally have lived on A will now be sent to node D. This is done 
to maintain the desired availability and durability guarantees. The 
replica sent to D will have a hint in its metadata that suggests 
which node was the intended recipient of the replica (in this case 
A).  Nodes that receive hinted replicas will keep them in a 
separate local database that is scanned periodically. Upon 
detecting that A has recovered, D will attempt to deliver the 
replica to A.  Once the transfer succeeds, D may delete the object 
from its local store without decreasing the total number of replicas 
in the system.  

Using hinted handoff, Dynamo ensures that the read and write 
operations are not failed due to temporary node or network 
failures. Applications that need the highest level of availability 
can set W to 1, which ensures that a write is accepted as long as a 
single node in the system has durably written the key it to its local 
store. Thus, the write request is only rejected if all nodes in the 
system are unavailable. However, in practice, most Amazon 
services in production set a higher W to meet the desired level of 
durability. A more detailed discussion of configuring N, R and W 
follows in section 6.  

It is imperative that a highly available storage system be capable 
of handling the failure of an entire data center(s). Data center 
failures happen due to power outages, cooling failures, network 
failures, and natural disasters. Dynamo is configured such that 
each object is replicated across multiple data centers. In essence, 
the preference list of a key is constructed such that the storage 
nodes are spread across multiple data centers. These datacenters 
are connected through high speed network links. This scheme of 
replicating across multiple datacenters allows us to handle entire 
data center failures without a data outage.  

4.7 Handling permanent failures: Replica 
synchronization 
Hinted handoff works best if the system membership churn is low 
and node failures are transient. There are scenarios under which 
hinted replicas become unavailable before they can be returned to 

the original replica node. To handle this and other threats to 
durability, Dynamo implements an anti-entropy (replica 
synchronization) protocol to keep the replicas synchronized.   

To detect the inconsistencies between replicas faster and to 
minimize the amount of transferred data, Dynamo uses Merkle 
trees [13]. A Merkle tree is a hash tree where leaves are hashes of 
the values of individual keys. Parent nodes higher in the tree are 
hashes of their respective children. The principal advantage of 
Merkle tree is that each branch of the tree can be checked 
independently without requiring nodes to download the entire tree 
or the entire data set. Moreover, Merkle trees help in reducing the 
amount of data that needs to be transferred while checking for 
inconsistencies among replicas. For instance, if the hash values of 
the root of two trees are equal, then the values of the leaf nodes in 
the tree are equal and the nodes require no synchronization. If not, 
it implies that the values of some replicas are different. In such 
cases, the nodes may exchange the hash values of children and the 
process continues until it reaches the leaves of the trees, at which 
point the hosts can identify the keys that are “out of sync”. Merkle 
trees minimize the amount of data that needs to be transferred for 
synchronization and reduce the number of disk reads performed 
during the anti-entropy process.  

Dynamo uses Merkle trees for anti-entropy as follows: Each node 
maintains a separate Merkle tree for each key range (the set of 
keys covered by a virtual node) it hosts. This allows nodes to 
compare whether the keys within a key range are up-to-date. In 
this scheme, two nodes exchange the root of the Merkle tree 
corresponding to the key ranges that they host in common. 
Subsequently, using the tree traversal scheme described above the 
nodes determine if they have any differences and perform the 
appropriate synchronization action. The disadvantage with this 
scheme is that many key ranges change when a node joins or 
leaves the system thereby requiring the tree(s) to be recalculated. 
This issue is addressed, however, by the refined partitioning 
scheme described in Section 6.2. 

4.8 Membership and Failure Detection 
4.8.1 Ring Membership 
In Amazon’s environment node outages (due to failures and 
maintenance tasks) are often transient but may last for extended 
intervals.  A node outage rarely signifies a permanent departure 
and therefore should not result in rebalancing of the partition 
assignment or repair of the unreachable replicas.  Similarly, 
manual error could result in the unintentional startup of new 
Dynamo nodes.   For these reasons, it was deemed appropriate to 
use an explicit mechanism to initiate the addition and removal of 
nodes from a Dynamo ring. An administrator uses a command 
line tool or a browser to connect to a Dynamo node and issue a 
membership change to join a node to a ring or remove a node 
from a ring.  The node that serves the request writes the 
membership change and its time of issue to persistent store. The 
membership changes form a history because nodes can be 
removed and added back multiple times. A gossip-based protocol 
propagates membership changes and maintains an eventually 
consistent view of membership. Each node contacts a peer chosen 
at random every second and the two nodes efficiently reconcile 
their persisted membership change histories.   

When a node starts for the first time, it chooses its set of tokens 
(virtual nodes in the consistent hash space) and maps nodes to 
their respective token sets. The mapping is persisted on disk and 
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initially contains only the local node and token set.  The mappings 
stored at different Dynamo nodes are reconciled during the same 
communication exchange that reconciles the membership change 
histories. Therefore, partitioning and placement information also 
propagates via the gossip-based protocol and each storage node is 
aware of the token ranges handled by its peers. This allows each 
node to forward a key’s read/write operations to the right set of 
nodes directly.  

4.8.2 External Discovery 
The mechanism described above could temporarily result in a 
logically partitioned Dynamo ring.  For example, the 
administrator could contact node A to join A to the ring, then 
contact node B to join B to the ring. In this scenario, nodes A and 
B would each consider itself a member of the ring, yet neither 
would be immediately aware of the other.  To prevent logical 
partitions, some Dynamo nodes play the role of seeds.  Seeds are 
nodes that are discovered via an external mechanism and are 
known to all nodes.  Because all nodes eventually reconcile their 
membership with a seed, logical partitions are highly unlikely.  
Seeds can be obtained either from static configuration or from a 
configuration service. Typically seeds are fully functional nodes 
in the Dynamo ring. 

4.8.3 Failure Detection 
Failure detection in Dynamo is used to avoid attempts to 
communicate with unreachable peers during get() and put() 
operations and when transferring partitions and hinted replicas.  
For the purpose of avoiding failed attempts at communication, a 
purely local notion of failure detection is entirely sufficient: node 
A may consider node B failed if node B does not respond to node 
A’s messages (even if B is responsive to node C's messages).  In 
the presence of a steady rate of client requests generating inter-
node communication in the Dynamo ring, a node A quickly 
discovers that a node B is unresponsive when B fails to respond to 
a message; Node A then uses alternate nodes to service requests 
that map to B's partitions; A periodically retries B to check for the 
latter's recovery.  In the absence of client requests to drive traffic 
between two nodes, neither node really needs to know whether the 
other is reachable and responsive. 

Decentralized failure detection protocols use a simple gossip-style 
protocol that enable each node in the system to learn about the 
arrival (or departure) of other nodes. For detailed information on 
decentralized failure detectors and the parameters affecting their 
accuracy, the interested reader is referred to [8]. Early designs of 
Dynamo used a decentralized failure detector to maintain a 
globally consistent view of failure state.  Later it was determined 
that the explicit node join and leave methods obviates the need for 
a global view of failure state. This is because nodes are notified of 
permanent node additions and removals by the explicit node join 
and leave methods and temporary node failures are detected by 
the individual nodes when they fail to communicate with others 
(while forwarding requests).  

4.9 Adding/Removing Storage Nodes 
When a new node (say X) is added into the system, it gets 
assigned a number of tokens that are randomly scattered on the 
ring. For every key range that is assigned to node X, there may be 
a number of nodes (less than or equal to N) that are currently in 
charge of handling keys that fall within its token range. Due to the 
allocation of key ranges to X, some existing nodes no longer have 
to some of their keys and these nodes transfer those keys to X. Let 

us consider a simple bootstrapping scenario where node X is 
added to the ring shown in Figure 2 between A and B. When X is 
added to the system, it is in charge of storing keys in the ranges 
(F, G], (G, A] and (A, X]. As a consequence, nodes B, C and D no 
longer have to store the keys in these respective ranges. 
Therefore, nodes B, C, and D will offer to and upon confirmation 
from X transfer the appropriate set of keys.  When a node is 
removed from the system, the reallocation of keys happens in a 
reverse process.   

Operational experience has shown that this approach distributes 
the load of key distribution uniformly across the storage nodes, 
which is important to meet the latency requirements and to ensure 
fast bootstrapping. Finally, by adding a confirmation round 
between the source and the destination, it is made sure that the 
destination node does not receive any duplicate transfers for a 
given key range.  

5. IMPLEMENTATION 
In Dynamo, each storage node has three main software 
components: request coordination, membership and failure 
detection, and a local persistence engine.  All these components 
are implemented in Java.  

Dynamo’s local persistence component allows for different 
storage engines to be plugged in. Engines that are in use are 
Berkeley Database (BDB) Transactional Data Store2, BDB Java 
Edition, MySQL, and an in-memory buffer with persistent 
backing store. The main reason for designing a pluggable 
persistence component is to choose the storage engine best suited 
for an application’s access patterns. For instance, BDB can handle 
objects typically in the order of tens of kilobytes whereas MySQL 
can handle objects of larger sizes. Applications choose Dynamo’s 
local persistence engine based on their object size distribution. 
The majority of Dynamo’s production instances use BDB 
Transactional Data Store. 

The request coordination component is built on top of an event-
driven messaging substrate where the message processing pipeline 
is split into multiple stages similar to the SEDA architecture [24]. 
All communications are implemented using Java NIO channels. 
The coordinator executes the read and write requests on behalf of 
clients by collecting data from one or more nodes (in the case of 
reads) or storing data at one or more nodes (for writes). Each 
client request results in the creation of a state machine on the node 
that received the client request. The state machine contains all the 
logic for identifying the nodes responsible for a key, sending the 
requests, waiting for responses, potentially doing retries, 
processing the replies and packaging the response to the client. 
Each state machine instance handles exactly one client request. 
For instance, a read operation implements the following state 
machine: (i) send read requests to the nodes, (ii) wait for 
minimum number of required responses, (iii) if too few replies 
were received within a given time bound, fail the request, (iv) 
otherwise gather all the data versions and determine the ones to be 
returned and (v) if versioning is enabled, perform syntactic 
reconciliation and generate an opaque write context that contains 
the vector clock that subsumes all the remaining versions. For the 
sake of brevity the failure handling and retry states are left out. 

After the read response has been returned to the caller the state 

2 http://www.oracle.com/database/berkeley-db.html 
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machine waits for a small period of time to receive any 
outstanding responses. If stale versions were returned in any of 
the responses, the coordinator updates those nodes with the latest 
version. This process is called read repair because it repairs 
replicas that have missed a recent update at an opportunistic time 
and relieves the anti-entropy protocol from having to do it.  

As noted earlier, write requests are coordinated by one of the top 
N nodes in the preference list. Although it is desirable always to 
have the first node among the top N to coordinate the writes 
thereby serializing all writes at a single location, this approach has 
led to uneven load distribution resulting in SLA violations. This is 
because the request load is not uniformly distributed across 
objects. To counter this, any of the top N nodes in the preference 
list is allowed to coordinate the writes. In particular, since each 
write usually follows a read operation, the coordinator for a write 
is chosen to be the node that replied fastest to the previous read 
operation which is stored in the context information of the 
request. This optimization enables us to pick the node that has the 
data that was read by the preceding read operation thereby 
increasing the chances of getting “read-your-writes” consistency. 
It also reduces variability in the performance of the request 
handling which improves the performance at the 99.9 percentile.  

6. EXPERIENCES & LESSONS LEARNED 
Dynamo is used by several services with different configurations. 
These instances differ by their version reconciliation logic, and 
read/write quorum characteristics. The following are the main 
patterns in which Dynamo is used: 

• Business logic specific reconciliation: This is a popular use 
case for Dynamo. Each data object is replicated across 
multiple nodes. In case of divergent versions, the client 
application performs its own reconciliation logic. The 
shopping cart service discussed earlier is a prime example of 
this category. Its business logic reconciles objects by 
merging different versions of a customer’s shopping cart.  

• Timestamp based reconciliation: This case differs from the 
previous one only in the reconciliation mechanism. In case of 
divergent versions, Dynamo performs simple timestamp 
based reconciliation logic of “last write wins”; i.e., the object 
with the largest physical timestamp value is chosen as the 
correct version. The service that maintains customer’s 
session information is a good example of a service that uses 
this mode.  

• High performance read engine: While Dynamo is built to be 
an “always writeable” data store, a few services are tuning its 
quorum characteristics and using it as a high performance 
read engine. Typically, these services have a high read 
request rate and only a small number of updates. In this 
configuration, typically R is set to be 1 and W to be N. For 
these services, Dynamo provides the ability to partition and 
replicate their data across multiple nodes thereby offering 
incremental scalability. Some of these instances function as 
the authoritative persistence cache for data stored in more 
heavy weight backing stores. Services that maintain product 
catalog and promotional items fit in this category. 

The main advantage of Dynamo is that its client applications can 
tune the values of N, R and W to achieve their desired levels of 
performance, availability and durability. For instance, the value of 
N determines the durability of each object. A typical value of N 
used by Dynamo’s users is 3. 

The values of W and R impact object availability, durability and 
consistency.  For instance, if W is set to 1, then the system will 
never reject a write request as long as there is at least one node in 
the system that can successfully process a write request. However, 
low values of W and R can increase the risk of inconsistency as 
write requests are deemed successful and returned to the clients 
even if they are not processed by a majority of the replicas. This 
also introduces a vulnerability window for durability when a write 
request is successfully returned to the client even though it has 
been persisted at only a small number of nodes.  

 
 

Figure 4: Average and 99.9 percentiles of latencies for read and 
write requests during our peak request season of December 2006. 
The intervals between consecutive ticks in the x-axis correspond 
to 12 hours. Latencies follow a diurnal pattern similar to the 
request rate and 99.9 percentile latencies are an order of 
magnitude higher than averages 

Figure 5: Comparison of performance of 99.9th percentile 
latencies for buffered vs. non-buffered writes over a period of 
24 hours. The intervals between consecutive ticks in the x-axis 
correspond to one hour. 
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Traditional wisdom holds that durability and availability go hand-
in-hand. However, this is not necessarily true here. For instance, 
the vulnerability window for durability can be decreased by 
increasing W. This may increase the probability of rejecting 
requests (thereby decreasing availability) because more storage 
hosts need to be alive to process a write request.   

The common (N,R,W) configuration used by several instances of 
Dynamo is (3,2,2). These values are chosen to meet the necessary 
levels of performance, durability, consistency, and availability 
SLAs.  

All the measurements presented in this section were taken on a 
live system operating with a configuration of (3,2,2) and running 
a couple hundred nodes with homogenous hardware 
configurations. As mentioned earlier, each instance of Dynamo 
contains nodes that are located in multiple datacenters. These 
datacenters are typically connected through high speed network 
links. Recall that to generate a successful get (or put) response R 
(or W) nodes need to respond to the coordinator. Clearly, the 
network latencies between datacenters affect the response time 
and the nodes (and their datacenter locations) are chosen such that 
the applications target SLAs are met.  

6.1 Balancing Performance and Durability  
While Dynamo’s principle design goal is to build a highly 
available data store, performance is an equally important criterion 
in Amazon’s platform. As noted earlier, to provide a consistent 
customer experience, Amazon’s services set their performance 
targets at higher percentiles (such as the 99.9th or 99.99th 
percentiles). A typical SLA required of services that use Dynamo 
is that 99.9% of the read and write requests execute within 300ms.  

Since Dynamo is run on standard commodity hardware 
components that have far less I/O throughput than high-end 
enterprise servers, providing consistently high performance for 
read and write operations is a non-trivial task. The involvement of 
multiple storage nodes in read and write operations makes it even 
more challenging, since the performance of these operations is 
limited by the slowest of the R or W replicas. Figure 4 shows the 
average and 99.9th percentile latencies of Dynamo’s read and 
write operations during a period of 30 days. As seen in the figure, 
the latencies exhibit a clear diurnal pattern which is a result of the 
diurnal pattern in the incoming request rate (i.e., there is a 

significant difference in request rate between the daytime and 
night). Moreover, the write latencies are higher than read latencies 
obviously because write operations always results in disk access. 
Also, the 99.9th percentile latencies are around 200 ms and are an 
order of magnitude higher than the averages. This is because the 
99.9th percentile latencies are affected by several factors such as 
variability in request load, object sizes, and locality patterns. 

While this level of performance is acceptable for a number of 
services, a few customer-facing services required higher levels of 
performance. For these services, Dynamo provides the ability to 
trade-off durability guarantees for performance. In the 
optimization each storage node maintains an object buffer in its 
main memory. Each write operation is stored in the buffer and 
gets periodically written to storage by a writer thread. In this 
scheme, read operations first check if the requested key is present 
in the buffer. If so, the object is read from the buffer instead of the 
storage engine. 

Figure 6: Fraction of nodes that are out-of-balance (i.e., nodes
whose request load is above a certain threshold from the
average system load) and their corresponding request load.
The interval between ticks in x-axis corresponds to a time
period of 30 minutes. This optimization has resulted in lowering the 99.9th percentile 

latency by a factor of 5 during peak traffic even for a very small 
buffer of a thousand objects (see Figure 5). Also, as seen in the 
figure, write buffering smoothes out higher percentile latencies. 
Obviously, this scheme trades durability for performance. In this 
scheme, a server crash can result in missing writes that were 
queued up in the buffer. To reduce the durability risk, the write 
operation is refined to have the coordinator choose one out of the 
N replicas to perform a “durable write”. Since the coordinator 
waits only for W responses, the performance of the write 
operation is not affected by the performance of the durable write 
operation performed by a single replica. 

6.2 Ensuring Uniform Load distribution 
Dynamo uses consistent hashing to partition its key space across 
its replicas and to ensure uniform load distribution. A uniform key 
distribution can help us achieve uniform load distribution 
assuming the access distribution of keys is not highly skewed. In 
particular, Dynamo’s design assumes that even where there is a 
significant skew in the access distribution there are enough keys 
in the popular end of the distribution so that the load of handling 
popular keys can be spread across the nodes uniformly through 
partitioning. This section discusses the load imbalance seen in 
Dynamo and the impact of different partitioning strategies on load 
distribution. 

To study the load imbalance and its correlation with request load, 
the total number of requests received by each node was measured 
for a period of 24 hours - broken down into intervals of 30 
minutes. In a given time window, a node is considered to be “in-
balance”, if the node’s request load deviates from the average load 
by a value a less than a certain threshold (here 15%). Otherwise 
the node was deemed “out-of-balance”. Figure 6 presents the 
fraction of nodes that are “out-of-balance” (henceforth, 
“imbalance ratio”) during this time period. For reference, the 
corresponding request load received by the entire system during 
this time period is also plotted. As seen in the figure, the 
imbalance ratio decreases with increasing load. For instance, 
during low loads the imbalance ratio is as high as 20% and during 
high loads it is close to 10%. Intuitively, this can be explained by 
the fact that under high loads, a large number of popular keys are 
accessed and due to uniform distribution of keys the load is 
evenly distributed. However, during low loads (where load is 1/8th 
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of the measured peak load), fewer popular keys are accessed, 
resulting in a higher load imbalance.  

This section discusses how Dynamo’s partitioning scheme has 
evolved over time and its implications on load distribution.  

Strategy 1: T random tokens per node and partition by token 
value:  This was the initial strategy deployed in production (and 
described in Section 4.2). In this scheme, each node is assigned T 
tokens (chosen uniformly at random from the hash space). The 
tokens of all nodes are ordered according to their values in the 
hash space. Every two consecutive tokens define a range. The last 
token and the first token form a range that "wraps" around from 
the highest value to the lowest value in the hash space. Because 
the tokens are chosen randomly, the ranges vary in size. As nodes 
join and leave the system, the token set changes and consequently 
the ranges change. Note that the space needed to maintain the 
membership at each node increases linearly with the number of 
nodes in the system. 

While using this strategy, the following problems were 
encountered. First, when a new node joins the system, it needs to 
“steal” its key ranges from other nodes. However, the nodes 
handing the key ranges off to the new node have to scan their 
local persistence store to retrieve the appropriate set of data items. 
Note that performing such a scan operation on a production node 
is tricky as scans are highly resource intensive operations and they 
need to be executed in the background without affecting the 
customer performance. This requires us to run the bootstrapping 
task at the lowest priority. However, this significantly slows the 
bootstrapping process and during busy shopping season, when the 
nodes are handling millions of requests a day, the bootstrapping 
has taken almost a day to complete. Second, when a node 
joins/leaves the system, the key ranges handled by many nodes 
change and the Merkle trees for the new ranges need to be 
recalculated, which is a non-trivial operation to perform on a 
production system. Finally, there was no easy way to take a 
snapshot of the entire key space due to the randomness in key 
ranges, and this made the process of archival complicated. In this 
scheme, archiving the entire key space requires us to retrieve the 
keys from each node separately, which is highly inefficient. 

The fundamental issue with this strategy is that the schemes for 
data partitioning and data placement are intertwined. For instance, 
in some cases, it is preferred to add more nodes to the system in 
order to handle an increase in request load. However, in this 
scenario, it is not possible to add nodes without affecting data 
partitioning. Ideally, it is desirable to use independent schemes for 
partitioning and placement. To this end, following strategies were 
evaluated:  

 
Figure 7: Partitioning and placement of keys in the three strategies. A, B, and C depict the three unique nodes that form the 
preference list for the key k1 on the consistent hashing ring (N=3). The shaded area indicates the key range for which nodes A, 
B, and C form the preference list. Dark arrows indicate the token locations for various nodes. 

Strategy 2: T random tokens per node and equal sized partitions:  
In this strategy, the hash space is divided into Q equally sized 
partitions/ranges and each node is assigned T random tokens. Q is 
usually set such that Q >> N and Q >> S*T, where S is the 
number of nodes in the system. In this strategy, the tokens are 
only used to build the function that maps values in the hash space 
to the ordered lists of nodes and not to decide the partitioning. A 
partition is placed on the first N unique nodes that are encountered 
while walking the consistent hashing ring clockwise from the end 
of the partition. Figure 7 illustrates this strategy for N=3. In this 
example, nodes A, B, C are encountered while walking the ring 
from the end of the partition that contains key k1. The primary 
advantages of this strategy are: (i) decoupling of partitioning and 
partition placement, and (ii) enabling the possibility of changing 
the placement scheme at runtime.   

Strategy 3: Q/S tokens per node, equal-sized partitions: Similar to 
strategy 2, this strategy divides the hash space into Q equally 
sized partitions and the placement of partition is decoupled from 
the partitioning scheme. Moreover, each node is assigned Q/S 
tokens where S is the number of nodes in the system. When a 
node leaves the system, its tokens are randomly distributed to the 
remaining nodes such that these properties are preserved. 
Similarly, when a node joins the system it "steals" tokens from 
nodes in the system in a way that preserves these properties.  

The efficiency of these three strategies is evaluated for a system 
with S=30 and N=3. However, comparing these different 
strategies in a fair manner is hard as different strategies have 
different configurations to tune their efficiency. For instance, the 
load distribution property of strategy 1 depends on the number of 
tokens (i.e., T) while strategy 3 depends on the number of 
partitions (i.e., Q). One fair way to compare these strategies is to 
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evaluate the skew in their load distribution while all strategies use 
the same amount of space to maintain their membership 
information. For instance, in strategy 1 each node needs to 
maintain the token positions of all the nodes in the ring and in 
strategy 3 each node needs to maintain the information regarding 
the partitions assigned to each node. 

In our next experiment, these strategies were evaluated by varying 
the relevant parameters (T and Q). The load balancing efficiency 
of each strategy was measured for different sizes of membership 
information that needs to be maintained at each node, where Load 
balancing efficiency is defined as the ratio of average number of 
requests served by each node to the maximum number of requests 
served by the hottest node. 

The results are given in Figure 8. As seen in the figure, strategy 3 
achieves the best load balancing efficiency and strategy 2 has the 
worst load balancing efficiency. For a brief time, Strategy 2 
served as an interim setup during the process of migrating 
Dynamo instances from using Strategy 1 to Strategy 3. Compared 
to Strategy 1, Strategy 3 achieves better efficiency and reduces the 
size of membership information maintained at each node by three 
orders of magnitude. While storage is not a major issue the nodes 
gossip the membership information periodically and as such it is 
desirable to keep this information as compact as possible.  In 
addition to this, strategy 3 is advantageous and simpler to deploy 
for the following reasons: (i) Faster bootstrapping/recovery: 
Since partition ranges are fixed, they can be stored in separate 
files, meaning a partition can be relocated as a unit by simply 
transferring the file (avoiding random accesses needed to locate 
specific items). This simplifies the process of bootstrapping and 
recovery. (ii) Ease of archival: Periodical archiving of the dataset 
is a mandatory requirement for most of Amazon storage services. 
Archiving the entire dataset stored by Dynamo is simpler in 
strategy 3 because the partition files can be archived separately. 
By contrast, in Strategy 1, the tokens are chosen randomly and,  
archiving the data stored in Dynamo requires retrieving the keys 
from individual nodes separately and is usually inefficient and 
slow. The disadvantage of strategy 3 is that changing the node 
membership requires coordination in order to preserve the 
properties required of the assignment.  

6.3 Divergent Versions: When and How 
Many? 
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Figure 8: Comparison of the load distribution efficiency of
different strategies for system with 30 nodes and N=3 with
equal amount of metadata maintained at each node. The
values of the system size and number of replicas are based on
the typical configuration deployed for majority of our
services. 

As noted earlier, Dynamo is designed to tradeoff consistency for 
availability. To understand the precise impact of different failures 
on consistency, detailed data is required on multiple factors: 
outage length, type of failure, component reliability, workload etc. 
Presenting these numbers in detail is outside of the scope of this 
paper. However, this section discusses a good summary metric:  
the number of divergent versions seen by the application in a live 
production environment.  

Divergent versions of a data item arise in two scenarios. The first 
is when the system is facing failure scenarios such as node 
failures, data center failures, and network partitions. The second is 
when the system is handling a large number of concurrent writers 
to a single data item and multiple nodes end up coordinating the 
updates concurrently. From both a usability and efficiency 
perspective, it is preferred to keep the number of divergent 
versions at any given time as low as possible. If the versions 
cannot be syntactically reconciled based on vector clocks alone, 
they have to be passed to the business logic for semantic 
reconciliation. Semantic reconciliation introduces additional load 
on services, so it is desirable to minimize the need for it.  

In our next experiment, the number of versions returned to the 
shopping cart service was profiled for a period of 24 hours.  
During this period, 99.94% of requests saw exactly one version; 
0.00057% of requests saw 2 versions; 0.00047% of requests saw 3 
versions and 0.00009% of requests saw 4 versions. This shows 
that divergent versions are created rarely.  

Experience shows that the increase in the number of divergent 
versions is contributed not by failures but due to the increase in 
number of concurrent writers. The increase in the number of 
concurrent writes is usually triggered by busy robots (automated 
client programs) and rarely by humans. This issue is not discussed 
in detail due to the sensitive nature of the story.  

6.4 Client-driven or Server-driven 
Coordination 
As mentioned in Section 5, Dynamo has a request coordination 
component that uses a state machine to handle incoming requests. 
Client requests are uniformly assigned to nodes in the ring by a 
load balancer. Any Dynamo node can act as a coordinator for a 
read request. Write requests on the other hand will be coordinated 
by a node in the key’s current preference list. This restriction is 
due to the fact that these preferred nodes have the added 
responsibility of creating a new version stamp that causally 
subsumes the version that has been updated by the write request. 
Note that if Dynamo’s versioning scheme is based on physical 
timestamps, any node can coordinate a write request. 

An alternative approach to request coordination is to move the 
state machine to the client nodes. In this scheme client 
applications use a library to perform request coordination locally. 
A client periodically picks a random Dynamo node and 
downloads its current view of Dynamo membership state. Using 
this information the client can determine which set of nodes form 
the preference list for any given key. Read requests can be 
coordinated at the client node thereby avoiding the extra network 
hop that is incurred if the request were assigned to a random 
Dynamo node by the load balancer. Writes will either be 
forwarded to a node in the key’s preference list or can be 
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coordinated locally if Dynamo is using timestamps based 
versioning.  

An important advantage of the client-driven coordination 
approach is that a load balancer is no longer required to uniformly 
distribute client load. Fair load distribution is implicitly 
guaranteed by the near uniform assignment of keys to the storage 
nodes. Obviously, the efficiency of this scheme is dependent on 
how fresh the membership information is at the client. Currently 
clients poll a random Dynamo node every 10 seconds for 
membership updates. A pull based approach was chosen over a 
push based one as the former scales better with large number of 
clients and requires very little state to be maintained at servers 
regarding clients. However, in the worst case the client can be 
exposed to stale membership for duration of 10 seconds. In case, 
if the client detects its membership table is stale (for instance, 
when some members are unreachable), it will immediately refresh 
its membership information.  

Table 2 shows the latency improvements at the 99.9th percentile 
and averages that were observed for a period of 24 hours using 
client-driven coordination compared to the server-driven 
approach. As seen in the table, the client-driven coordination 
approach reduces the latencies by at least 30 milliseconds for 
99.9th percentile latencies and decreases the average by 3 to 4 
milliseconds. The latency improvement is because the client-
driven approach eliminates the overhead of the load balancer and 
the extra network hop that may be incurred when a request is 
assigned to a random node. As seen in the table, average latencies 
tend to be significantly lower than latencies at the 99.9th 
percentile. This is because Dynamo’s storage engine caches and 
write buffer have good hit ratios. Moreover, since the load 
balancers and network introduce additional variability to the 
response time, the gain in response time is higher for the 99.9th 
percentile than the average.  

6.5 Balancing background vs. foreground 
tasks 
Each node performs different kinds of background tasks for 
replica synchronization and data handoff (either due to hinting or 
adding/removing nodes) in addition to its normal foreground 
put/get operations. In early production settings, these background 
tasks triggered the problem of resource contention and affected 
the performance of the regular put and get operations. Hence, it 
became necessary to ensure that background tasks ran only when 
the regular critical operations are not affected significantly. To 
this end, the background tasks were integrated with an admission 
control mechanism. Each of the background tasks uses this 
controller to reserve runtime slices of the resource (e.g. database), 

shared across all background tasks. A feedback mechanism based 
on the monitored performance of the foreground tasks is 
employed to change the number of slices that are available to the 
background tasks. 

The admission controller constantly monitors the behavior of 
resource accesses while executing a "foreground" put/get 
operation. Monitored aspects include latencies for disk operations, 
failed database accesses due to lock-contention and transaction 
timeouts, and request queue wait times. This information is used 
to check whether the percentiles of latencies (or failures) in a 
given trailing time window are close to a desired threshold. For 
example, the background controller checks to see how close the 
99th percentile database read latency (over the last 60 seconds) is 
to a preset threshold (say 50ms).  The controller uses such 
comparisons to assess the resource availability for the foreground 
operations. Subsequently, it decides on how many time slices will 
be available to background tasks, thereby using the feedback loop 
to limit the intrusiveness of the background activities.  Note that a 
similar problem of managing background tasks has been studied 
in [4]. 

6.6 Discussion 
This section summarizes some of the experiences gained during 
the process of implementation and maintenance of Dynamo. 
Many Amazon internal services have used Dynamo for the past 
two years and it has provided significant levels of availability to 
its applications. In particular, applications have received 
successful responses (without timing out) for 99.9995% of its 
requests and no data loss event has occurred to date.  

Moreover, the primary advantage of Dynamo is that it provides 
the necessary knobs using the three parameters of (N,R,W) to tune 
their instance based on their needs.. Unlike popular commercial 
data stores, Dynamo exposes data consistency and reconciliation 
logic issues to the developers. At the outset, one may expect the 
application logic to become more complex. However, historically, 
Amazon’s platform is built for high availability and many 
applications are designed to handle different failure modes and 
inconsistencies that may arise. Hence, porting such applications to 
use Dynamo was a relatively simple task. For new applications 
that want to use Dynamo, some analysis is required during the 
initial stages of the development to pick the right conflict 
resolution mechanisms that meet the business case appropriately. 
Finally, Dynamo adopts a full membership model where each 
node is aware of the data hosted by its peers. To do this, each 
node actively gossips the full routing table with other nodes in the 
system. This model works well for a system that contains couple 
of hundreds of nodes. However, scaling such a design to run with 
tens of thousands of nodes is not trivial because the overhead in 
maintaining the routing table increases with the system size. This 
limitation might be overcome by introducing hierarchical 
extensions to Dynamo. Also, note that this problem is actively 
addressed by O(1) DHT systems(e.g., [14]). 

7. CONCLUSIONS 
This paper described Dynamo, a highly available and scalable 
data store, used for storing state of a number of core services of 
Amazon.com’s e-commerce platform. Dynamo has provided the 
desired levels of availability and performance and has been 
successful in handling server failures, data center failures and 
network partitions. Dynamo is incrementally scalable and allows 
service owners to scale up and down based on their current 

Table 2: Performance of client-driven and server-driven 
coordination approaches. 
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request load. Dynamo allows service owners to customize their 
storage system to meet their desired performance, durability and 
consistency SLAs by allowing them to tune the parameters N, R, 
and W. 

The production use of Dynamo for the past year demonstrates that 
decentralized techniques can be combined to provide a single 
highly-available system. Its success in one of the most 
challenging application environments shows that an eventual-
consistent storage system can be a building block for highly-
available applications.  
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